metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zheng-Bo Han* and Yong Ma

School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: ceshzb@lnu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.030 wR factor = 0.078 Data-to-parameter ratio = 10.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[di- μ_2 -aqua- μ -pyrazole-3,5-dicarboxylato-copper(II)]

The copper(II) coordination polymer $[Cu(pydc)(H_2O)_2]_n$ (pydc = 3,5-pyrazoledicarboxylate, $C_5H_2N_2O_4$), was synthesized by treating Cu(II) nitrate with 3,5-pyrazoledicarboxylic acid under hydrothermal conditions. Single-crystal X-ray diffraction indicates that the copper coordination polymer has a pydc-bridged ladder-like chain structure.

Comment

The design and construction of coordination polymers has attracted much attention owing to their intriguing topologies and potential applications as functional materials (Inoue *et al.*, 2001). Many networks with various structural motifs have been documented in the past decade (Amabilino & Stoddart, 1995). Recently, a new type of stable three-dimensional metal-organic framework has been reported (Lu *et al.*, 2006). Unlike pyridine 2,4-, 3,4- 2,5- and 2,6-dicarboxylic acids, which have been widely reported as bridging ligands for the assembly of various coordination polymers, complexes with 3,5-pyrazole-dicarboxylic acid (H₂pydc) have been reported only rarely (Pan *et al.*, 2000). We report here the synthesis and structure of a copper(II) coordination polymer with 3,5-pyrazole-dicarboxylic acid, (I).

Received 16 July 2006 Accepted 12 August 2006

© 2006 International Union of Crystallography All rights reserved

In (I), the Cu atom adopts a distorted octahedral CuO₅N coordination geometry (Fig. 1 and Table 1). Pairs of Cu atoms are bridged by molecules of the 3,5-pyrazoledicarboxylate ligand *via* its *N*- and *O*-donor atoms. and one *O*-donor atom of the second carboxyl group. The copper centers are further bridged by two μ_2 -aqua ligands, generating a ladder-like chain (Fig. 2), with a Cu···Cu distance of 3.269 (3) Å. These chains are further linked *via* N-H···O hydrogen bonding between pyridyl N atoms, carboxylate O atoms and aqua ligands (Table 2), forming a three-dimensional network.

Experimental

A mixture of Cu(NO₃)₂·2H₂O (0.5 mmol, 0.120 g), 3,5-pyrazoledicarboxylic acid (0.5 mmol, 0.087 g), NaOH (1 mmol, 0.04 g), and water (10 ml) was mixed in a 23 ml Teflon reactor which was heated at 453 K for 6 d and then cooled to room temperature at a rate of 5 K h⁻¹ (yield: 42%). Analysis for C₅H₆CuN₂O₆ (found/calc %): C 23.48 (23.68), H 2.34 (2.38), N 11.23 (11.04).

> 3017 measured reflections 1494 independent reflections

 $R_{\rm int} = 0.013$

 $\theta_{\rm max} = 26.0^{\circ}$

1434 reflections with $I > 2\sigma(I)$

Crystal data	
$[Cu(C_5H_2N_2O_4)(H_2O)_2]$	V = 383.55 (7) Å ³
$M_r = 253.66$	Z = 2
Triclinic, P1	$D_x = 2.196 \text{ Mg m}^{-3}$
a = 6.8178 (7) Å	Mo $K\alpha$ radiation
b = 7.4015 (8) Å	$\mu = 2.86 \text{ mm}^{-1}$
c = 8.5079 (9) Å	T = 293 (2) K
$\alpha = 104.775 \ (2)^{\circ}$	Block, green
$\beta = 90.733 \ (2)^{\circ}$	$0.37 \times 0.25 \times 0.21 \text{ mm}$
$\gamma = 111.497 \ (2)^{\circ}$	

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.419, T_{\max} = 0.582$ (expected range = 0.396–0.549)

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.029P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 1.0214P]
$wR(F^2) = 0.078$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
1494 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
143 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected	geometric	parameters	(Å,	°).
----------	-----------	------------	-----	-----

Cu1-O2 ⁱ	1.990 (2)	Cu1-N2	2.056 (2)
Cu1-O4	2.032 (2)	$Cu1 - O1W^{ii}$	2.075 (2)
Cu1–O2W	2.038 (2)	Cu1 - O1W	2.152 (2)
O2 ⁱ -Cu1-O4	89.38 (9)	O2W-Cu1-N2	91.44 (10)
$O2^{i}-Cu1-O2W$	89.72 (10)	O4-Cu1-O1W	90.52 (9)
O4-Cu1-O2W	96.53 (10)	O2W-Cu1-O1W	172.86 (9)
O2 ⁱ -Cu1-N2	169.15 (9)	N2-Cu1-O1W	90.91 (9)
O4-Cu1-N2	79.76 (9)	$O1W^{ii}$ -Cu1-O1W	78.74 (9)

Symmetry codes: (i) x, y, z - 1; (ii) -x, -y, -z - 3.

Figure 1

View of the structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) x, y, z + 1; (ii) -x, -y, -z - 2; (iii) -x, -y, -z - 1; (iv) x, y, z - 1.]

Fig	gure 2			
A	fragment of the	ladder-like	chain	in (I).

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO3^{iii}$	0.86	2.09	2.831(3)	144
$O1W-H1WB\cdotsO3^{iv}$	0.843 (10)	1.823 (12)	2.650(3)	167 (3)
$O1W-H1WB\cdots O4^{iv}$	0.843 (10) 0.840 (10)	2.50 (3)	3.145 (3)	134 (3)
$O2W-H2WA\cdots O1^{v}$		1.959 (15)	2.782 (3)	166 (3)
$\begin{array}{l} O2W - H2WB \cdots O4^{vi} \\ O1W - H1WA \cdots O1^{vii} \end{array}$	0.839 (10)	1.954 (11)	2.791 (3)	176 (4)
	0.842 (10)	1.903 (19)	2.684 (3)	154 (4)

Symmetry codes: (iii) x - 1, y, z; (iv) -x + 1, -y, -z - 3; (v) -x, -y + 1, -z - 2; (vi) -x + 1, -y + 1, -z - 3; (vii) -x, -y, -z - 2.

The water H atoms were located in a difference Fourier map and refined with distance restraints O-H = 0.85 (1) Å and $H \cdot \cdot \cdot H = 1.39$ (1) Å. Other H atoms were placed at calculated positions (C-H = 0.93 Å and N-H = 0.86 Å) and refined using the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*; molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

The authors thank the Program for Liaoning Excellent Talents in Universities for supporting this work (RC-05–11).

References

Amabilino, D. B. & Stoddart, J. F. (1995). Chem. Rev. 95, 2725-2828.

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Inoue, K., Imai, H., Ghalsasi, P. S., Kikuchi, K., Ohba, M., Okawa, H. & Yakhmi, J. V. (2001). Angew. Chem. Int. Ed. 40, 4242–4245.
- Lu, W.-G., Su, C.-Y., Lu, T.-B., Jiang, L. & Jia, J.-M. (2006). J. Am. Chem. Soc. 128, 34–36.
- Pan, L., Huang, X.-Y. & Li, J. (2000). J. Solid State Chem. 152, 236-246.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.