Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng-Bo Han* and Yong Ma

School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: ceshzb@lnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.030$
$w R$ factor $=0.078$
Data-to-parameter ratio $=10.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[di- μ_{2}-aqua- μ-pyrazole-3,5-dicarboxylatocopper(II)]

The copper(II) coordination polymer $\left[\mathrm{Cu}(\text { pydc })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (pydc = 3,5-pyrazoledicarboxylate, $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$), was synthesized by treating $\mathrm{Cu}(\mathrm{II})$ nitrate with 3,5 -pyrazoledicarboxylic acid under hydrothermal conditions. Single-crystal X-ray diffraction indicates that the copper coordination polymer has a pydc-bridged ladder-like chain structure.

Comment

The design and construction of coordination polymers has attracted much attention owing to their intriguing topologies and potential applications as functional materials (Inoue et al., 2001). Many networks with various structural motifs have been documented in the past decade (Amabilino \& Stoddart, 1995). Recently, a new type of stable three-dimensional metalorganic framework has been reported (Lu et al., 2006). Unlike pyridine 2,4-, 3,4-2,5- and 2,6-dicarboxylic acids, which have been widely reported as bridging ligands for the assembly of various coordination polymers, complexes with 3,5-pyrazoledicarboxylic acid (H_{2} pydc) have been reported only rarely (Pan et al., 2000). We report here the synthesis and structure of a copper(II) coordination polymer with 3,5-pyrazoledicarboxylic acid, (I).

(I)

Received 16 July 2006
Accepted 12 August 2006

In (I), the Cu atom adopts a distorted octahedral $\mathrm{CuO}_{5} \mathrm{~N}$ coordination geometry (Fig. 1 and Table 1). Pairs of Cu atoms are bridged by molecules of the 3,5-pyrazoledicarboxylate ligand via its N - and O-donor atoms. and one O-donor atom of the second carboxyl group. The copper centers are further bridged by two μ_{2}-aqua ligands, generating a ladder-like chain (Fig. 2), with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 3.269 (3) \AA. These chains are further linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between pyridyl N atoms, carboxylate O atoms and aqua ligands (Table 2), forming a three-dimensional network.

Experimental

A mixture of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.120 \mathrm{~g}), 3,5$-pyrazoledicarboxylic acid ($0.5 \mathrm{mmol}, 0.087 \mathrm{~g}$), $\mathrm{NaOH}(1 \mathrm{mmol}, 0.04 \mathrm{~g})$, and water (10 ml) was mixed in a 23 ml Teflon reactor which was heated at 453 K for 6 d and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ (yield: 42%). Analysis for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{CuN}_{2} \mathrm{O}_{6}$ (found/calc \%): C 23.48 (23.68), H 2.34 (2.38), N 11.23 (11.04).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=253.66$
Triclinic, $P \overline{1}$
$a=6.8178$ (7) \AA
$b=7.4015$ (8) \AA
$c=8.5079$ (9) \AA
$\alpha=104.775$ (2) ${ }^{\circ}$
$\beta=90.733$ (2) ${ }^{\circ}$
$\gamma=111.497(2)^{\circ}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.419, T_{\text {max }}=0.582$
(expected range $=0.396-0.549)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.029 P)^{2} \\
&+1.0214 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.990(2)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.056(2)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$2.032(2)$	$\mathrm{Cu} 1-\mathrm{O} 1 W^{\text {ii }}$	$2.075(2)$
$\mathrm{Cu} 1-\mathrm{O} 2 W$	$2.038(2)$	$\mathrm{Cu} 1-\mathrm{O} 1 W$	$2.152(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4$	$89.38(9)$	$\mathrm{O} 2 W-\mathrm{Cu} 1-\mathrm{N} 2$	$91.44(10)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2 W$	$89.72(10)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 1 W$	$90.52(9)$
$\mathrm{O}^{2}-\mathrm{Cu} 1-\mathrm{O} 2 W$	$96.53(10)$	$\mathrm{O} 2 W-\mathrm{Cu} 1-\mathrm{O} 1 W$	$172.86(9)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$169.15(9)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1 W$	$90.91(9)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$79.76(9)$	$\mathrm{O} 1 W^{\mathrm{Ci}}-\mathrm{Cu} 1-\mathrm{O} 1 W$	$78.74(9)$

[^0]

Figure 1
View of the structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $x, y, z+1$; (ii) $-x,-y,-z-2$; (iii) $-x,-y,-z-1$; (iv) $x, y, z-1$.]

Figure 2
A fragment of the ladder-like chain in (I).

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\text {iii }}$	0.86	2.09	2.831 (3)	144
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O}^{\text {iv }}$	0.843 (10)	1.823 (12)	2.650 (3)	167 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 4^{\text {iv }}$	0.843 (10)	2.50 (3)	3.145 (3)	134 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 1^{\text {v }}$	0.840 (10)	1.959 (15)	2.782 (3)	166 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O}^{\text {vi }}$	0.839 (10)	1.954 (11)	2.791 (3)	176 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {vii }}$	0.842 (10)	1.903 (19)	2.684 (3)	154 (4)

Symmetry codes: (iii) $x-1, y, z$; (iv) $-x+1,-y,-z-3$; (v) $-x,-y+1,-z-2$; (vi)
$-x+1,-y+1,-z-3$; (vii) $-x,-y,-z-2$.

The water H atoms were located in a difference Fourier map and refined with distance restraints $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=$ 1.39 (1) Å. Other H atoms were placed at calculated positions ($\mathrm{C}-$ $\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and refined using the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank the Program for Liaoning Excellent Talents in Universities for supporting this work (RC-05-11).

References

Amabilino, D. B. \& Stoddart, J. F. (1995). Chem. Rev. 95, 2725-2828. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Inoue, K., Imai, H., Ghalsasi, P. S., Kikuchi, K., Ohba, M., Okawa, H. \& Yakhmi, J. V. (2001). Angew. Chem. Int. Ed. 40, 4242-4245.
Lu, W.-G., Su, C.-Y., Lu, T.-B., Jiang, L. \& Jia, J.-M. (2006). J. Am. Chem. Soc. 128, 34-36.
Pan, L., Huang, X.-Y. \& Li, J. (2000). J. Solid State Chem. 152, 236-246.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y,-z-3$

